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ABSTRACT 

A simple derivation is given far a formula obtained previously for the 
effective size of random-mating populations with overlapping generations. 
The effective papulation size is the same as that for a population with discrete 
generations having the same variance of lifetime family size and the same 
number of individuals entering the population per generation. 

I N  recent years, formulae for rates of inbreeding and increment in genetic drift 
have been deTeloped for populations with overlapping generations. FELSEN- 

STEIN (1971) described a haploid model with fixed numbers in each age class 
and parental age distribution. Subsequently, the model has been extended to 
random-mating diploid populations (HILL 1972a; JOHNSON 1977; CHOY and 
WEIR 1978; EMIGH and POLLAK 1979; see also these papers for a more com- 
plete bibliography). If generations overlap, the levels of inbreeding and drift 
variance among conceptual replicates do not increase at a steady rate, in contrast 
to the case cif discrete generations; but eventually the increase does asymptote 
at a steady rate relative to the variability then present in the population. FEL- 
SENSTEIN (1971), JOHNSON (1977), CHOY and WEIR (1978) and EMIGH and 
POLLAK (1979) give exact recurrence formulae for probabilities of identity 
by descent, and JOHNSON (1977) also gives approximate formulae in a more 
elegant form. FELSENSTEIN, JOHNSON and EMIGH and POLLAK show how 
to compute the asymptotic rate of increase in inbreeding coefficient and the 
effective population size in terms of the members of individuals in each age class 
and the parental age distribution. HILL (1972a) showed that the effective sizes 
of populations with overlapping generations “equal the effective sizes of popula- 
tions with discrete generations which have the same number of individuals enter- 
ing the population each generation and the same variance of lifetime familymem- 
ber”. For specific cases, this result has been checked by JOHNSON (1977) and by 
CHOY and WEIR (1978). The proof in my paper (HILL 1972a) is very tortuous, 
especially in view of the simple result. A much easier and perhaps more enlight- 
ening derivation follows. 
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ANALYSIS 

To clarify the presentation, let us consider first a haploid model, then a 
monoecious diploid model and finally a dioecious diploid model. In each case 
there are assumed to be discrete breeding periods, e.g., years, a constant number 
born or chosen for breeding at each time period, and a constant parental age 
distribution such that the generation interval (mean age of parents at birth of 
their progeny) remains fixed. The effects are studied of sampling genes that are 
neutral with respect to fitness among the individuals present some period a long 
time in the past on the variation in mean gene frequency among conceptual 
replicate populations now. It is essential that the intervening time be long, so 
that the genes present in that cohort have had a chance to spread through all 
age groups. 

Haploid model: Assume that N individuals are born each time period and that 
the generation interval (mean age of parents when their progeny are born) is L. 
At some time in the distant past, assume that the cohort of N newborns had fre- 

quencies X I ,  . . . , X N ,  where Xi = 0 or 1 ,  of some neutral gene, with 2 X i / N  = q 
being the mean gene frequency. Assume also that individual i had ni, progeny 

when aged j time units, and ni =, Z nij progeny in its whole life, where k is the 
age after which all reproduction ceases. For any newborn gene or individual (in 
the haploid case), the probability that it ultimately remains in the population 
is given by EMIGH (1979)  and is equal to l / ( L N ) ,  which is the expected genetic 
contribution by the whole cohort ( l / L )  divided by the number in the cohort ( N )  . 
This probability does not depend on when it was born as long as we look far 
enough ahead subsequently. An alternative viewpoint is that the contribution of 
the newborn to the subsequent mean gene frequency is a fraction i/L of its gene 
frequency (0 or 1 ) .  Let the mean contribution by the whole cohort be Q, say, 
where 

N 

i=1 

k 

3=1 

Differential reproduction among the individuals will induce a change in Q and 
cause genetic drift. The form of ( 1 )  is, however, just the same as that for a cohort 
of individuals with discrete generations, except for the scale €actor, 1/L. Thus, 
methodology and results of LATTER (1959)  and of CROW and KIMURA (1970) 
can be used directly. The mean of the X i  is q and the mean family size, averaged 
over all cohorts, is pn = 1 ,  since the population is of constant size. Thus, the 
expected value of Q is q/L, and the genetic drift is, from ( I ) ,  

1 *' 

LN i=1 

_ -  - z ( n i - p n )  xi . 
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Let ue define the variance of family size as on2 = .z ( n i - ~ ~ ) ~ / N  and, for sim- 
plicity, ignore terms in 1/N2 relative to 1/N that are introduced by correlations 
among the ni and among the X i  since their sums are fixed. The ni and X i  are 
independent and V (Xi) = q ( 1 -q) , hence 

N 

0 = l  

To compute the effective population size, ccmsider an idealized population of 
N haplolid individuals with no differential viability or  fertility and discrete 
generations, where the variance in family size equals 1 from the Poisson distri- 
bution). More strictly, the variance equals 1-1 / N  from the multinomial, but 
second order terms have already been ignored in (2). The drift from one genera- 
tion of sampling given a mean gene frequency of q, observed either in the next 
generation OF in terms of ultimate fixation, is q(  l - q ) / N .  The “annual effective 
population size”, Nu, the effective size of a population having discrete generations 
of length one time period or, for example, one year and the same increment in 
drift variance (HILL 1972a) is thus, using (2), 

The effective population size measures the increment in drift per generation, 
or per L time periods and is, assuming that the increments in drift are small so 
that they are essentially linear over one generation, 

This is the same formula as derived previously (HILL 1972a), except that second 
order terms were included, to give N e  = (N-I ) L/un2. 

Monoecious diploids: Assuming random mating, but without any need to 
specify the joint age distribution of mates, the analysis extends readily to mon- 
ecious diploids with random selfing. If N individuals are born in each cohort, 
the probability of ultimate survival of any gene is 1/(2NL) (EMIGH and POLLAK 
1979), rather than 1/2N with discrete generations. Discrete-generation methods 
(CROW and KIMURA 1970) can now be used and scaled by the factor 1/L, and 
are given here only for completeness. Drift in the mean gene frequency of 
progeny arises both from differential progeny numbers and from segregation 
among heterozygotes. As before, let X i  be the frequency of genes of one type in 
individual i in a cohort born a long time ago, with Xi now taking values of 0,1/2 
and 1, and let ni be the number of progeny in its lifetime (for stable population 
size the mean number of progeny per individual equals two). Also let be the 
difference in frequency between the jth sampled gene and its parental value X,,  
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where S i j  = 0 if the parent is a homozygote or -t 1/2 if a heterozygote. Then 
corresponding to ( 1 ) , 

The components of (6) are sampled independently. Noting that V ( X i )  = 
q ( 1-4) / 2  and V ( S i j )  = E ( S i j  ) = frequency of heterozygotes times variance 
given heterozygotes = 2q (1-q) (1/4)  = q (l--q)/2, 

( 7 )  V(Q-q/L) = q ( l - q )  (an2 + 2)/(8NL2)7 

again with terms of order 1/N2 ignolred. 

In the idealized population with discrete generations, the drift variance per 
generation is q(  1-q)/2N. Hence, from ( 7 )  and ( 4 ) ,  

as given previously (HILL 1972a) , apart from second order terms. With a Poisson 
distribution of family sizes, on2 = 2 and Ne = NL;  but with random deaths and 
family sizes at each breeding period, variance of lifetime family size exceeds that 
from the Poisson (HILL 1972a). 
Two sexes: The numbers used in the above calculations could equally be in 

terms of the numbers born in each cohort, in which case on2 includes differences 
in viability both before and after reaching reproductive age, or in terms of num- 
bers reaching breeding age, in which case pre-reproductive viability differences 
are excluded. T o  allow for either approach in the dioecious case, assume that 
different numbers, M males and F females, are born or sampled for breeding in 
each cohort. There are now four pathways for genes: 

Pathway Family size 
mean family Heterozygote 

Parent Progeny age .me sampling variance covariance 

cov(mm,mf) male - male =mm % m i  ammi I "*"i 
male - female Lmf S m f i i  u2mji 

female - male 
female - female 

The generation interval is given by L = (Lmm + Lmf + Lf,  4- Lff ) /4 ,  and the 
probability of ultimate survival of a gene is 1/(4ML) in a male of pre-reproduc- 
tive age and 1/(4FL) in a female (EMIGH and POLLAK 1979). The contribution 
of a cohort to ultimate mean gene frequency is 



OVERLAPPING GENERATIONS 321 

The drift variance follows immediately, and by using discrete generation results, 

If M = F = N / 2 ,  for example, with counting in n e w h s  

where U; = + ukf + 2cov(mm,mf) is the variance of the total number of 
progeny of a male, and U; is defined similarly. If U: = uz ( I O )  reduces to (8). 

N e  8NL/(uL + U; + 4) , (10) 

f '  

DISCUSSION 

The results, ( 5 ) ,  ( 8 )  , (9) and (IO), reiterate those obtained previously (HILL 
1972a), differing only in the simplicity of their derivation, and confirming that 
the variance effective number with overlapping generations is the same as with 
discrete generations, providing lifetime family size and numbers entering each 
generation are used. The population numbers cannot be too small, or there will 
be wild fluctuations in gene frequency over a period of a generation and the drift 
per generation will not equal L times that per year. The formal need for a stable 
age distribution must also be emphasized, otherwise progeny born at different 
periods of an individual's life will have different chances of contribution subse- 
quently. However, it seems quite reasonable to assume that small disturbances 
either in age distribution or in the numbers born in each cohort will not sub- 
stantially affect the results. A formal proof of this conjecture would be difficult. 

The calculations have been made solely for the variance effective number. A 
similar argument can be adopted using the contribution of one cohort to the 
subsequent increase in inbreeding to show that inbreeding effective numbers are 
the same, as they must be in random mating populations of constant size (CROW 
and KIMURA 1970). 

The formulae for effective population size given here in terms of variances of 
family size appear quite different from those of FELSENSTEIN (1971), JOHNSON 
(1977) and EMIGH and POLLAK (1979) which are expressions in numbers in the 
population and contributions to total reproduction of each age group. Their 
formulae can, however, be rearranged in terms of variance of family size, and 
then agree with those given here (JOHNSON 1977). The formulae in terms of 
variances of family size are more general, for they allow there to be differ- 
ential viability and fertility, and correlations of fertilities of individuals at suc- 
cessive ages. In practice, they are most likely to be useful in getting an estimate 
of rates of inbreeding and drift in populations in which full pedigrees are not 
available, or  would be expensive to utilize completely, or  in organizing popula- 
tion structure to minimize rates of inbreeding and gene frequency drift, for 
example in an unselected control population (HILL 1972b). 

Finally, it should be emphasized that these effective population size formulae 
give approximations only to the asymptotic rates of increase in drift or levels of 
inbreeding. Initially inbreeding increments are erratic and the level, even when 
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the rate of increase has settled down, may depart by a constant value from the 
product of number of time periods and asymptotic rate of increase per time 
period; even so the approximations have been found to be quite good (JOHNSON 
1977; CHOY and WEIR 1978). Thus for general planning of animal breeding 
programs or study of long standing populations in the wild, these asymptotic 
rates should be a n  adequate guide. 

I am grateful to EDWARD POLLAK for helpful discussion. 
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